Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 32\cdot 61 + 17\cdot 61^{2} + 15\cdot 61^{3} + 10\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 55\cdot 61 + 25\cdot 61^{2} + 2\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 + 9\cdot 61 + 32\cdot 61^{2} + 45\cdot 61^{3} + 39\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 + 25\cdot 61 + 46\cdot 61^{2} + 58\cdot 61^{3} + 21\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)$ |
| $(1,3)(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,4)$ | $0$ |
| $2$ | $2$ | $(1,2)$ | $0$ |
| $2$ | $4$ | $(1,4,2,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.