Properties

Label 2.5_2281.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 2281 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11405= 5 \cdot 2281 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 104 x^{6} - 298 x^{5} + 3011 x^{4} - 5530 x^{3} + 6746 x^{2} - 4030 x + 21955 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 56\cdot 139 + 78\cdot 139^{2} + 98\cdot 139^{3} + 35\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 54\cdot 139 + 2\cdot 139^{2} + 39\cdot 139^{3} + 110\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 + 70\cdot 139 + 59\cdot 139^{2} + 136\cdot 139^{3} + 47\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 41\cdot 139 + 139^{2} + 135\cdot 139^{3} + 54\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 96 + 97\cdot 139 + 137\cdot 139^{2} + 3\cdot 139^{3} + 84\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 108 + 68\cdot 139 + 79\cdot 139^{2} + 2\cdot 139^{3} + 91\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 132 + 84\cdot 139 + 136\cdot 139^{2} + 99\cdot 139^{3} + 28\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 135 + 82\cdot 139 + 60\cdot 139^{2} + 40\cdot 139^{3} + 103\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,2,5)(4,8,6,7)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,3,2,5)(4,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.