Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 56\cdot 139 + 78\cdot 139^{2} + 98\cdot 139^{3} + 35\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 + 54\cdot 139 + 2\cdot 139^{2} + 39\cdot 139^{3} + 110\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 32 + 70\cdot 139 + 59\cdot 139^{2} + 136\cdot 139^{3} + 47\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 41\cdot 139 + 139^{2} + 135\cdot 139^{3} + 54\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 96 + 97\cdot 139 + 137\cdot 139^{2} + 3\cdot 139^{3} + 84\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 108 + 68\cdot 139 + 79\cdot 139^{2} + 2\cdot 139^{3} + 91\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 132 + 84\cdot 139 + 136\cdot 139^{2} + 99\cdot 139^{3} + 28\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 135 + 82\cdot 139 + 60\cdot 139^{2} + 40\cdot 139^{3} + 103\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,3,2,5)(4,8,6,7)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$-2$ |
| $2$ |
$2$ |
$(1,4)(2,6)(3,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,6)(4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,2,5)(4,8,6,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.