Properties

Label 2.5_227.9t3.1c3
Dimension 2
Group $D_{9}$
Conductor $ 5 \cdot 227 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1135= 5 \cdot 227 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 3 x^{7} + 16 x^{5} - 12 x^{4} - 10 x^{3} - 13 x^{2} + 60 x - 45 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.5_227.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 4 a + 4 + \left(8 a^{2} + 4 a + 2\right)\cdot 11 + \left(a + 9\right)\cdot 11^{2} + \left(5 a^{2} + 3 a\right)\cdot 11^{3} + \left(10 a^{2} + 2 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 8 a + 5 + \left(4 a^{2} + 7 a + 5\right)\cdot 11 + \left(4 a^{2} + 5 a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 8 a + 5\right)\cdot 11^{3} + \left(9 a^{2} + 6 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 7 a + 4 + \left(6 a + 6\right)\cdot 11 + \left(6 a^{2} + 8 a + 9\right)\cdot 11^{2} + \left(4 a^{2} + 7 a + 6\right)\cdot 11^{3} + \left(3 a^{2} + 2 a + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 6 a + 1 + \left(7 a^{2} + a + 9\right)\cdot 11 + \left(7 a^{2} + 4 a + 3\right)\cdot 11^{2} + \left(10 a + 2\right)\cdot 11^{3} + \left(4 a^{2} + 6 a\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 2 a + 4 + \left(10 a^{2} + 4 a + 6\right)\cdot 11 + \left(5 a^{2} + 4 a + 5\right)\cdot 11^{2} + \left(3 a^{2} + 2 a + 2\right)\cdot 11^{3} + \left(4 a^{2} + 8 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 10 a + 10 + \left(4 a^{2} + 4 a + 7\right)\cdot 11 + \left(9 a^{2} + 7 a + 6\right)\cdot 11^{2} + \left(5 a^{2} + 3 a + 8\right)\cdot 11^{3} + \left(5 a^{2} + 8 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{2} + a + 6 + \left(5 a^{2} + 5 a + 6\right)\cdot 11 + \left(2 a^{2} + 5 a\right)\cdot 11^{2} + \left(5 a^{2} + 8 a + 1\right)\cdot 11^{3} + \left(7 a^{2} + a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 3 a^{2} + 5 a + 2 + \left(5 a^{2} + 10 a + 1\right)\cdot 11 + \left(6 a^{2} + 5 a + 10\right)\cdot 11^{2} + \left(10 a + 8\right)\cdot 11^{3} + \left(2 a^{2} + 10 a + 6\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 5 a^{2} + a + 9 + \left(7 a^{2} + 10 a + 9\right)\cdot 11 + 5\cdot 11^{2} + \left(10 a^{2} + 7\right)\cdot 11^{3} + \left(7 a^{2} + 7 a\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,6,7,2,3,4,9,8)$
$(1,7,4)(2,9,5)(3,8,6)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,3)(2,5)(4,8)(6,7)$$0$
$2$$3$$(1,7,4)(2,9,5)(3,8,6)$$-1$
$2$$9$$(1,5,6,7,2,3,4,9,8)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,6,2,4,8,5,7,3,9)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,2,8,7,9,6,4,5,3)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.