Properties

Label 2.5_227.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 5 \cdot 227 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1135= 5 \cdot 227 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} - 5 x^{2} + 6 x - 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.5_227.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 8 + \left(15 a + 17\right)\cdot 31 + \left(15 a + 20\right)\cdot 31^{2} + \left(15 a + 7\right)\cdot 31^{3} + \left(17 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 24 + \left(15 a + 13\right)\cdot 31 + \left(15 a + 10\right)\cdot 31^{2} + \left(15 a + 23\right)\cdot 31^{3} + \left(13 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 28\cdot 31 + 17\cdot 31^{2} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 29 + \left(15 a + 22\right)\cdot 31 + \left(15 a + 4\right)\cdot 31^{2} + \left(15 a + 23\right)\cdot 31^{3} + \left(13 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 2\cdot 31 + 13\cdot 31^{2} + 30\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 3 + \left(15 a + 8\right)\cdot 31 + \left(15 a + 26\right)\cdot 31^{2} + \left(15 a + 7\right)\cdot 31^{3} + \left(17 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3)(2,5)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)$$-2$
$3$$2$$(1,3)(2,5)$$0$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$2$$3$$(1,4,3)(2,6,5)$$-1$
$2$$6$$(1,6,3,2,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.