Properties

Label 2.5_2161.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 2161 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10805= 5 \cdot 2161 $
Artin number field: Splitting field of $f= x^{8} + 88 x^{6} + 2056 x^{4} - 5525 x^{2} + 3600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_2161.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 28 + 4\cdot 181 + 107\cdot 181^{2} + 93\cdot 181^{3} + 21\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 39 + 149\cdot 181 + 110\cdot 181^{2} + 16\cdot 181^{3} + 154\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 138\cdot 181 + 62\cdot 181^{2} + 60\cdot 181^{3} + 85\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 66 + 102\cdot 181 + 66\cdot 181^{2} + 164\cdot 181^{3} + 36\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 115 + 78\cdot 181 + 114\cdot 181^{2} + 16\cdot 181^{3} + 144\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 126 + 42\cdot 181 + 118\cdot 181^{2} + 120\cdot 181^{3} + 95\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 142 + 31\cdot 181 + 70\cdot 181^{2} + 164\cdot 181^{3} + 26\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 153 + 176\cdot 181 + 73\cdot 181^{2} + 87\cdot 181^{3} + 159\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,6,4)(2,3,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.