Properties

Label 2.5_211.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 5 \cdot 211 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1055= 5 \cdot 211 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 11 x^{7} - 10 x^{6} + 30 x^{5} - 28 x^{4} + 31 x^{3} - 58 x^{2} - 40 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.5_211.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{3} + 4 x + 64 $
Roots:
$r_{ 1 }$ $=$ $ 55 a^{2} + 9 a + 27 + \left(42 a^{2} + 6 a + 31\right)\cdot 71 + \left(14 a^{2} + 65 a + 21\right)\cdot 71^{2} + \left(39 a^{2} + 64 a + 20\right)\cdot 71^{3} + \left(45 a^{2} + 69 a + 34\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 43 a^{2} + 26 a + 4 + \left(20 a^{2} + 12\right)\cdot 71 + \left(34 a^{2} + 22 a + 56\right)\cdot 71^{2} + \left(46 a^{2} + 33 a + 3\right)\cdot 71^{3} + \left(23 a^{2} + 54 a + 36\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 a^{2} + 49 a + 46 + \left(3 a^{2} + 53 a + 40\right)\cdot 71 + \left(13 a^{2} + 37 a + 16\right)\cdot 71^{2} + \left(62 a^{2} + 67 a + 15\right)\cdot 71^{3} + \left(38 a^{2} + 67 a + 52\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a^{2} + 62 a + 15 + \left(34 a^{2} + 52 a + 32\right)\cdot 71 + \left(57 a^{2} + 24 a + 17\right)\cdot 71^{2} + \left(29 a^{2} + 3 a + 66\right)\cdot 71^{3} + \left(14 a^{2} + 7 a + 45\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a^{2} + 67 a + 61 + \left(55 a^{2} + 5 a + 9\right)\cdot 71 + \left(6 a^{2} + 40 a + 30\right)\cdot 71^{2} + \left(10 a^{2} + 55 a + 1\right)\cdot 71^{3} + \left(25 a^{2} + 17 a + 40\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{2} + 13 a + 26 + \left(25 a^{2} + 38 a + 50\right)\cdot 71 + \left(46 a^{2} + 17 a + 10\right)\cdot 71^{2} + \left(63 a^{2} + 24 a + 19\right)\cdot 71^{3} + \left(51 a^{2} + 26 a + 63\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 25 + \left(65 a^{2} + 12 a + 43\right)\cdot 71 + \left(69 a^{2} + 52 a + 50\right)\cdot 71^{2} + \left(a^{2} + 2 a + 15\right)\cdot 71^{3} + \left(11 a^{2} + 65 a + 13\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + 49 a + 29 + \left(66 a^{2} + 64 a + 62\right)\cdot 71 + \left(29 a^{2} + 8 a + 20\right)\cdot 71^{2} + \left(14 a^{2} + 53 a + 60\right)\cdot 71^{3} + \left(22 a^{2} + 69 a + 55\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 22 a^{2} + 9 a + 53 + \left(42 a^{2} + 50 a + 1\right)\cdot 71 + \left(11 a^{2} + 15 a + 60\right)\cdot 71^{2} + \left(16 a^{2} + 50 a + 10\right)\cdot 71^{3} + \left(51 a^{2} + 47 a + 14\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,8,7,9,5,4,6,2)$
$(1,6)(3,4)(5,8)(7,9)$
$(1,7,4)(2,8,5)(3,9,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,6)(3,4)(5,8)(7,9)$$0$
$2$$3$$(1,7,4)(2,8,5)(3,9,6)$$-1$
$2$$9$$(1,3,8,7,9,5,4,6,2)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,8,9,4,2,3,7,5,6)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,9,2,7,6,8,4,3,5)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.