Properties

Label 2.5_2039.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 2039 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10195= 5 \cdot 2039 $
Artin number field: Splitting field of $f= x^{8} + 28 x^{6} + 1396 x^{4} + 26995 x^{2} + 360000 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 13 + 27\cdot 89 + 73\cdot 89^{2} + 14\cdot 89^{3} + 67\cdot 89^{4} + 34\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 33\cdot 89 + 56\cdot 89^{2} + 8\cdot 89^{3} + 68\cdot 89^{4} + 16\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 32 + 55\cdot 89 + 38\cdot 89^{2} + 47\cdot 89^{3} + 73\cdot 89^{4} + 3\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 38 + 61\cdot 89 + 21\cdot 89^{2} + 41\cdot 89^{3} + 74\cdot 89^{4} + 74\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 51 + 27\cdot 89 + 67\cdot 89^{2} + 47\cdot 89^{3} + 14\cdot 89^{4} + 14\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 57 + 33\cdot 89 + 50\cdot 89^{2} + 41\cdot 89^{3} + 15\cdot 89^{4} + 85\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 70 + 55\cdot 89 + 32\cdot 89^{2} + 80\cdot 89^{3} + 20\cdot 89^{4} + 72\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 76 + 61\cdot 89 + 15\cdot 89^{2} + 74\cdot 89^{3} + 21\cdot 89^{4} + 54\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,4)(2,3,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.