Properties

Label 2.5_2039.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 2039 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$10195= 5 \cdot 2039 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 18 x^{2} - 17 x + 582 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_2039.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 11\cdot 31 + 5\cdot 31^{2} + 25\cdot 31^{3} + 14\cdot 31^{4} + 9\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 4\cdot 31 + 9\cdot 31^{2} + 11\cdot 31^{3} + 19\cdot 31^{4} + 26\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 28 + 26\cdot 31 + 21\cdot 31^{2} + 19\cdot 31^{3} + 11\cdot 31^{4} + 4\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 30 + 19\cdot 31 + 25\cdot 31^{2} + 5\cdot 31^{3} + 16\cdot 31^{4} + 21\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.