Basic invariants
| Dimension: | $2$ |
| Group: | $D_{4}$ |
| Conductor: | \(10195\)\(\medspace = 5 \cdot 2039 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 4.0.20787605.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | odd |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(\sqrt{5}, \sqrt{-2039})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 + 11\cdot 31 + 5\cdot 31^{2} + 25\cdot 31^{3} + 14\cdot 31^{4} + 9\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 2 }$ | $=$ |
\( 4 + 4\cdot 31 + 9\cdot 31^{2} + 11\cdot 31^{3} + 19\cdot 31^{4} + 26\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 3 }$ | $=$ |
\( 28 + 26\cdot 31 + 21\cdot 31^{2} + 19\cdot 31^{3} + 11\cdot 31^{4} + 4\cdot 31^{5} +O(31^{6})\)
|
| $r_{ 4 }$ | $=$ |
\( 30 + 19\cdot 31 + 25\cdot 31^{2} + 5\cdot 31^{3} + 16\cdot 31^{4} + 21\cdot 31^{5} +O(31^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |