Properties

Label 2.10195.4t3.a
Dimension $2$
Group $D_{4}$
Conductor $10195$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(10195\)\(\medspace = 5 \cdot 2039 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.20787605.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-2039})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 2 + 11\cdot 31 + 5\cdot 31^{2} + 25\cdot 31^{3} + 14\cdot 31^{4} + 9\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 4\cdot 31 + 9\cdot 31^{2} + 11\cdot 31^{3} + 19\cdot 31^{4} + 26\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 28 + 26\cdot 31 + 21\cdot 31^{2} + 19\cdot 31^{3} + 11\cdot 31^{4} + 4\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 30 + 19\cdot 31 + 25\cdot 31^{2} + 5\cdot 31^{3} + 16\cdot 31^{4} + 21\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.