Properties

Label 2.5_19e2_29_31e2.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 19^{2} \cdot 29 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$50303545= 5 \cdot 19^{2} \cdot 29 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 1034 x^{2} - 1618 x + 107017 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 4 + 51\cdot 59 + 30\cdot 59^{2} + 39\cdot 59^{3} + 3\cdot 59^{4} + 8\cdot 59^{5} + 51\cdot 59^{6} + 21\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 23 + 21\cdot 59 + 15\cdot 59^{2} + 46\cdot 59^{3} + 27\cdot 59^{4} + 20\cdot 59^{5} + 46\cdot 59^{6} + 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 35 + 23\cdot 59 + 57\cdot 59^{2} + 47\cdot 59^{3} + 21\cdot 59^{4} + 14\cdot 59^{5} + 40\cdot 59^{6} + 20\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 57 + 21\cdot 59 + 14\cdot 59^{2} + 43\cdot 59^{3} + 5\cdot 59^{4} + 16\cdot 59^{5} + 39\cdot 59^{6} + 14\cdot 59^{7} +O\left(59^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.