Properties

Label 2.5_19_61.4t3.17
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 19 \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5795= 5 \cdot 19 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 24 x^{6} - 58 x^{5} + 811 x^{4} - 1530 x^{3} + 12626 x^{2} - 11870 x + 115355 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 16\cdot 79 + 30\cdot 79^{2} + 12\cdot 79^{3} + 40\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 48\cdot 79 + 7\cdot 79^{2} + 45\cdot 79^{3} + 43\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 53\cdot 79 + 16\cdot 79^{2} + 79^{3} + 22\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 38\cdot 79 + 54\cdot 79^{2} + 58\cdot 79^{3} + 26\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 53 + 40\cdot 79 + 24\cdot 79^{2} + 20\cdot 79^{3} + 52\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 25\cdot 79 + 62\cdot 79^{2} + 77\cdot 79^{3} + 56\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 73 + 30\cdot 79 + 71\cdot 79^{2} + 33\cdot 79^{3} + 35\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 78 + 62\cdot 79 + 48\cdot 79^{2} + 66\cdot 79^{3} + 38\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.