Properties

Label 2.5_19_31.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 19 \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2945= 5 \cdot 19 \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 13 x^{2} + 11 x + 31 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 27\cdot 29 + 19\cdot 29^{2} + 7\cdot 29^{3} + 6\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 23\cdot 29 + 13\cdot 29^{2} + 20\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 27\cdot 29 + 23\cdot 29^{2} + 26\cdot 29^{3} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 9\cdot 29 + 3\cdot 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.