Properties

Label 2.5_19_29e2_31.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 19 \cdot 29^{2} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2476745= 5 \cdot 19 \cdot 29^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 414 x^{2} - 1928 x + 10607 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 8 + 6\cdot 79 + 42\cdot 79^{2} + 5\cdot 79^{3} + 36\cdot 79^{4} + 76\cdot 79^{5} + 17\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 14 + 59\cdot 79 + 71\cdot 79^{2} + 75\cdot 79^{3} + 43\cdot 79^{4} + 73\cdot 79^{5} + 62\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 + 62\cdot 79 + 31\cdot 79^{2} + 70\cdot 79^{3} + 4\cdot 79^{4} + 76\cdot 79^{5} + 61\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 35 + 30\cdot 79 + 12\cdot 79^{2} + 6\cdot 79^{3} + 73\cdot 79^{4} + 10\cdot 79^{5} + 15\cdot 79^{6} +O\left(79^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(2,3)$ $0$
$2$ $4$ $(1,2,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.