Properties

Label 2.5_19_29_31.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 19 \cdot 29 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$85405= 5 \cdot 19 \cdot 29 \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 72 x^{2} + 3 x + 1049 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_19_29_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 15 + 25\cdot 41 + 11\cdot 41^{2} + 25\cdot 41^{3} + 20\cdot 41^{4} + 29\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 33 + 37\cdot 41 + 7\cdot 41^{2} + 26\cdot 41^{3} + 7\cdot 41^{4} + 34\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 37 + 37\cdot 41 + 38\cdot 41^{2} + 41^{3} + 28\cdot 41^{4} + 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 + 21\cdot 41 + 23\cdot 41^{2} + 28\cdot 41^{3} + 25\cdot 41^{4} + 16\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.