Basic invariants
| Dimension: | $2$ |
| Group: | $D_{4}$ |
| Conductor: | \(85405\)\(\medspace = 5 \cdot 19 \cdot 29 \cdot 31 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 4.4.1458802805.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | even |
| Determinant: | 1.85405.2t1.a.a |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of Degree 4 field |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} - 2x^{3} - 130x^{2} + 131x + 20 \)
|
The roots of $f$ are computed in $\Q_{ 11 }$ to precision 9.
Roots:
| $r_{ 1 }$ | $=$ |
\( 4 + 4\cdot 11 + 9\cdot 11^{2} + 11^{3} + 6\cdot 11^{4} + 4\cdot 11^{5} + 9\cdot 11^{6} + 8\cdot 11^{7} + 6\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 2 }$ | $=$ |
\( 5 + 4\cdot 11 + 6\cdot 11^{2} + 10\cdot 11^{3} + 2\cdot 11^{4} + 7\cdot 11^{5} + 3\cdot 11^{6} + 2\cdot 11^{7} + 9\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 3 }$ | $=$ |
\( 7 + 6\cdot 11 + 4\cdot 11^{2} + 8\cdot 11^{4} + 3\cdot 11^{5} + 7\cdot 11^{6} + 8\cdot 11^{7} + 11^{8} +O(11^{9})\)
|
| $r_{ 4 }$ | $=$ |
\( 8 + 6\cdot 11 + 11^{2} + 9\cdot 11^{3} + 4\cdot 11^{4} + 6\cdot 11^{5} + 11^{6} + 2\cdot 11^{7} + 4\cdot 11^{8} +O(11^{9})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | ✓ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ | |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ | |
| $2$ | $2$ | $(1,4)$ | $0$ | |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |