Properties

Label 2.5_19_29.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 19 \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2755= 5 \cdot 19 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 6 x^{5} + 412 x^{4} - 1106 x^{3} + 1105 x^{2} - 414 x + 19044 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_19_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 10 + 51\cdot 79 + 30\cdot 79^{2} + 59\cdot 79^{3} + 25\cdot 79^{4} + 64\cdot 79^{5} + 72\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 14 + 66\cdot 79 + 72\cdot 79^{2} + 19\cdot 79^{4} + 60\cdot 79^{5} + 7\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 + 57\cdot 79 + 61\cdot 79^{2} + 31\cdot 79^{3} + 68\cdot 79^{4} + 16\cdot 79^{5} + 6\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 17 + 79 + 73\cdot 79^{2} + 57\cdot 79^{3} + 6\cdot 79^{4} + 43\cdot 79^{5} + 75\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 + 72\cdot 79 + 24\cdot 79^{2} + 52\cdot 79^{3} + 61\cdot 79^{4} + 12\cdot 79^{5} + 20\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 33 + 33\cdot 79 + 29\cdot 79^{2} + 67\cdot 79^{3} + 63\cdot 79^{4} + 37\cdot 79^{5} + 68\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 55 + 5\cdot 79 + 58\cdot 79^{2} + 26\cdot 79^{3} + 26\cdot 79^{4} + 3\cdot 79^{5} + 56\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 74 + 28\cdot 79 + 44\cdot 79^{2} + 19\cdot 79^{3} + 44\cdot 79^{4} + 77\cdot 79^{5} + 8\cdot 79^{6} +O\left(79^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,6)(2,8,3,7)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)(7,8)$$-2$
$2$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$2$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$2$$4$$(1,4,5,6)(2,8,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.