Properties

Label 2.5_19_101.4t3.18c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 19 \cdot 101 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9595= 5 \cdot 19 \cdot 101 $
Artin number field: Splitting field of $f= x^{8} - 52 x^{6} - 490 x^{5} - 242 x^{4} + 12740 x^{3} + 83893 x^{2} + 224910 x + 297036 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_19_101.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 17\cdot 37 + 6\cdot 37^{2} + 20\cdot 37^{3} + 13\cdot 37^{4} + 26\cdot 37^{5} + 24\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 + 37 + 20\cdot 37^{2} + 3\cdot 37^{3} + 33\cdot 37^{4} + 6\cdot 37^{5} + 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 + 21\cdot 37 + 13\cdot 37^{2} + 35\cdot 37^{3} + 30\cdot 37^{4} + 11\cdot 37^{5} + 9\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 + 27\cdot 37 + 28\cdot 37^{2} + 34\cdot 37^{3} + 2\cdot 37^{4} + 30\cdot 37^{5} + 16\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 15 + 26\cdot 37 + 8\cdot 37^{2} + 4\cdot 37^{3} + 28\cdot 37^{4} + 3\cdot 37^{5} + 36\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 + 4\cdot 37 + 5\cdot 37^{2} + 37^{3} + 7\cdot 37^{4} + 6\cdot 37^{5} + 10\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 28 + 34\cdot 37 + 33\cdot 37^{2} + 14\cdot 37^{3} + 33\cdot 37^{4} + 28\cdot 37^{5} + 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 30 + 15\cdot 37 + 31\cdot 37^{2} + 33\cdot 37^{3} + 35\cdot 37^{4} + 33\cdot 37^{5} + 10\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,7)(4,5,8,6)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,7)(4,8)(5,6)$$-2$
$2$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$2$$2$$(1,6)(2,8)(3,5)(4,7)$$0$
$2$$4$$(1,2,3,7)(4,5,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.