Properties

Label 2.5_199.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 199 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$995= 5 \cdot 199 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 8 x^{6} - 14 x^{5} + 178 x^{4} - 432 x^{3} + 941 x^{2} - 680 x + 3020 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_199.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 10\cdot 61 + 44\cdot 61^{2} + 47\cdot 61^{3} + 58\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 52\cdot 61 + 34\cdot 61^{2} + 59\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 35\cdot 61 + 8\cdot 61^{2} + 19\cdot 61^{3} + 2\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 16\cdot 61 + 60\cdot 61^{2} + 30\cdot 61^{3} + 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 18 + 23\cdot 61 + 15\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 + 11\cdot 61 + 17\cdot 61^{2} + 28\cdot 61^{3} + 25\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 47 + 56\cdot 61 + 43\cdot 61^{2} + 50\cdot 61^{3} + 29\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 38\cdot 61 + 34\cdot 61^{2} + 53\cdot 61^{3} + 31\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,7)(6,8)$
$(1,5,4,6)(2,8,3,7)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,6)(7,8)$$-2$
$2$$2$$(1,2)(3,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(2,5)(3,6)(4,7)$$0$
$2$$4$$(1,5,4,6)(2,8,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.