Properties

Label 2.5_191.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 191 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$955= 5 \cdot 191 $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 152 x^{4} - 245 x^{2} + 2401 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_191.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 239 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 23\cdot 239 + 56\cdot 239^{2} + 86\cdot 239^{3} + 188\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 76 + 168\cdot 239 + 183\cdot 239^{2} + 61\cdot 239^{3} + 140\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 80 + 60\cdot 239 + 39\cdot 239^{2} + 26\cdot 239^{3} + 30\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 85 + 230\cdot 239 + 216\cdot 239^{2} + 57\cdot 239^{3} + 206\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 154 + 8\cdot 239 + 22\cdot 239^{2} + 181\cdot 239^{3} + 32\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 159 + 178\cdot 239 + 199\cdot 239^{2} + 212\cdot 239^{3} + 208\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 163 + 70\cdot 239 + 55\cdot 239^{2} + 177\cdot 239^{3} + 98\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 218 + 215\cdot 239 + 182\cdot 239^{2} + 152\cdot 239^{3} + 50\cdot 239^{4} +O\left(239^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.