Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 239 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 21\cdot 239 + 47\cdot 239^{2} + 209\cdot 239^{3} + 144\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 74 + 228\cdot 239 + 207\cdot 239^{2} + 180\cdot 239^{3} + 162\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 166 + 10\cdot 239 + 31\cdot 239^{2} + 58\cdot 239^{3} + 76\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 230 + 217\cdot 239 + 191\cdot 239^{2} + 29\cdot 239^{3} + 94\cdot 239^{4} +O\left(239^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,4,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.