Properties

Label 2.5_19.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$95= 5 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 8 x^{6} + 7 x^{5} + 19 x^{4} + 7 x^{3} + 8 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 51\cdot 131 + 125\cdot 131^{2} + 35\cdot 131^{3} + 8\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 91\cdot 131 + 30\cdot 131^{2} + 127\cdot 131^{3} + 16\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 30\cdot 131 + 74\cdot 131^{2} + 52\cdot 131^{3} + 98\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 5\cdot 131 + 117\cdot 131^{2} + 118\cdot 131^{3} + 53\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 + 53\cdot 131 + 21\cdot 131^{2} + 19\cdot 131^{3} + 118\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 81 + 60\cdot 131 + 79\cdot 131^{2} + 48\cdot 131^{3} + 79\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 86 + 70\cdot 131 + 115\cdot 131^{2} + 49\cdot 131^{3} + 36\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 126 + 29\cdot 131 + 91\cdot 131^{2} + 71\cdot 131^{3} + 112\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5)(3,4,8,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,6,5)(3,4,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.