Properties

Label 2.5_1823.7t2.1c3
Dimension 2
Group $D_{7}$
Conductor $ 5 \cdot 1823 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$9115= 5 \cdot 1823 $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 9 x^{5} - 10 x^{4} + 16 x^{3} + 344 x^{2} + 1040 x + 960 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.5_1823.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 12\cdot 13 + \left(7 a + 3\right)\cdot 13^{2} + \left(a + 8\right)\cdot 13^{3} + \left(4 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 2 + \left(2 a + 2\right)\cdot 13 + \left(11 a + 11\right)\cdot 13^{2} + \left(7 a + 7\right)\cdot 13^{3} + \left(4 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 12 + 12 a\cdot 13 + \left(5 a + 10\right)\cdot 13^{2} + \left(11 a + 2\right)\cdot 13^{3} + \left(8 a + 7\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 1 + \left(10 a + 6\right)\cdot 13 + \left(a + 6\right)\cdot 13^{2} + \left(5 a + 4\right)\cdot 13^{3} + \left(8 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 + 9\cdot 13 + 2\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 2 a\cdot 13 + \left(2 a + 10\right)\cdot 13^{2} + \left(10 a + 3\right)\cdot 13^{3} + 2 a\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 7 + \left(10 a + 8\right)\cdot 13 + \left(10 a + 9\right)\cdot 13^{2} + \left(2 a + 11\right)\cdot 13^{3} + \left(10 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,5)(4,6)$
$(1,5)(2,6)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,5)(2,6)(3,4)$$0$
$2$$7$$(1,2,4,3,6,5,7)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,4,6,7,2,3,5)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,3,7,4,5,2,6)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.