Properties

Label 2.5_181.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 181 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$905= 5 \cdot 181 $
Artin number field: Splitting field of $f= x^{8} - 32 x^{6} + 226 x^{4} - 425 x^{2} + 225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_181.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 89\cdot 101 + 48\cdot 101^{2} + 46\cdot 101^{3} + 67\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 60\cdot 101 + 82\cdot 101^{2} + 12\cdot 101^{3} + 57\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 40 + 29\cdot 101 + 52\cdot 101^{2} + 76\cdot 101^{3} + 33\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 86\cdot 101^{2} + 42\cdot 101^{3} + 23\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 100\cdot 101 + 14\cdot 101^{2} + 58\cdot 101^{3} + 77\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 71\cdot 101 + 48\cdot 101^{2} + 24\cdot 101^{3} + 67\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 85 + 40\cdot 101 + 18\cdot 101^{2} + 88\cdot 101^{3} + 43\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 91 + 11\cdot 101 + 52\cdot 101^{2} + 54\cdot 101^{3} + 33\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$2$$4$$(1,7,4,6)(2,5,3,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.