Properties

Label 2.5_181.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 181 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$905= 5 \cdot 181 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 7 x^{2} + 3 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 43\cdot 101 + 35\cdot 101^{2} + 37\cdot 101^{3} + 56\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 59 + 42\cdot 101 + 50\cdot 101^{2} + 95\cdot 101^{3} + 32\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 65 + 13\cdot 101 + 84\cdot 101^{2} + 61\cdot 101^{3} + 22\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 101 + 32\cdot 101^{2} + 7\cdot 101^{3} + 90\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.