Properties

Label 2.5_181.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 181 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$905= 5 \cdot 181 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 12 x^{2} + 13 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_181.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 33 + 44\cdot 101 + 82\cdot 101^{2} + 101^{3} + 22\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 39 + 15\cdot 101 + 15\cdot 101^{2} + 69\cdot 101^{3} + 11\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 85\cdot 101 + 85\cdot 101^{2} + 31\cdot 101^{3} + 89\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 69 + 56\cdot 101 + 18\cdot 101^{2} + 99\cdot 101^{3} + 78\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.