Properties

Label 2.5_179.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 179 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$895= 5 \cdot 179 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 91 x^{4} - 190 x^{3} + 896 x^{2} - 800 x + 2480 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_179.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 29 + 10\cdot 139 + 134\cdot 139^{2} + 64\cdot 139^{3} + 7\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 + 120\cdot 139 + 75\cdot 139^{2} + 63\cdot 139^{3} + 14\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 59 + 29\cdot 139 + 41\cdot 139^{2} + 31\cdot 139^{3} + 76\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 69 + 138\cdot 139 + 16\cdot 139^{2} + 109\cdot 139^{3} + 55\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 71 + 122\cdot 139^{2} + 29\cdot 139^{3} + 83\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 81 + 109\cdot 139 + 97\cdot 139^{2} + 107\cdot 139^{3} + 62\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 99 + 18\cdot 139 + 63\cdot 139^{2} + 75\cdot 139^{3} + 124\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 111 + 128\cdot 139 + 4\cdot 139^{2} + 74\cdot 139^{3} + 131\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,4)(5,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,7,6)(2,3,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.