Properties

Label 2.5_1619.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 1619 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8095= 5 \cdot 1619 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 811 x^{4} - 1630 x^{3} + 8096 x^{2} - 7280 x + 168080 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 92\cdot 131 + 48\cdot 131^{2} + 112\cdot 131^{3} + 59\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 109\cdot 131 + 90\cdot 131^{2} + 129\cdot 131^{3} + 96\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 + 5\cdot 131 + 19\cdot 131^{2} + 35\cdot 131^{3} + 85\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 108\cdot 131 + 69\cdot 131^{2} + 78\cdot 131^{3} + 8\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 + 22\cdot 131 + 61\cdot 131^{2} + 52\cdot 131^{3} + 122\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 125\cdot 131 + 111\cdot 131^{2} + 95\cdot 131^{3} + 45\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 98 + 21\cdot 131 + 40\cdot 131^{2} + 131^{3} + 34\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 121 + 38\cdot 131 + 82\cdot 131^{2} + 18\cdot 131^{3} + 71\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,7,6)(2,3,8,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.