Properties

Label 2.5_1579.7t2.1c1
Dimension 2
Group $D_{7}$
Conductor $ 5 \cdot 1579 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$7895= 5 \cdot 1579 $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 6 x^{5} - 56 x^{4} + 374 x^{3} - 1074 x^{2} + 1404 x - 729 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.5_1579.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 9\cdot 17 + 8\cdot 17^{2} + 2\cdot 17^{3} + 9\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 4 + \left(12 a + 16\right)\cdot 17 + \left(12 a + 13\right)\cdot 17^{2} + \left(2 a + 1\right)\cdot 17^{3} + \left(13 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 10 + \left(4 a + 8\right)\cdot 17 + 14 a\cdot 17^{2} + \left(13 a + 12\right)\cdot 17^{3} + \left(6 a + 11\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 5 + 2 a\cdot 17 + \left(7 a + 8\right)\cdot 17^{2} + \left(12 a + 4\right)\cdot 17^{3} + \left(4 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 15 + \left(14 a + 9\right)\cdot 17 + \left(9 a + 12\right)\cdot 17^{2} + \left(4 a + 9\right)\cdot 17^{3} + \left(12 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 16 + \left(4 a + 16\right)\cdot 17 + \left(4 a + 13\right)\cdot 17^{2} + \left(14 a + 8\right)\cdot 17^{3} + \left(3 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 16 + \left(12 a + 6\right)\cdot 17 + \left(2 a + 10\right)\cdot 17^{2} + \left(3 a + 11\right)\cdot 17^{3} + \left(10 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(3,4)(5,6)$
$(1,5)(2,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,5)(2,7)(4,6)$$0$
$2$$7$$(1,6,3,4,5,7,2)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,3,5,2,6,4,7)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,4,2,3,7,6,5)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
The blue line marks the conjugacy class containing complex conjugation.