Properties

Label 2.5_151.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 151 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$755= 5 \cdot 151 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 84 x^{4} + 595 x^{2} + 1600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_151.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 42 + 124\cdot 191 + 79\cdot 191^{2} + 164\cdot 191^{3} + 49\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 + 8\cdot 191 + 97\cdot 191^{2} + 140\cdot 191^{3} + 10\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 42\cdot 191 + 88\cdot 191^{2} + 177\cdot 191^{3} + 101\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 117\cdot 191 + 105\cdot 191^{2} + 153\cdot 191^{3} + 62\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 115 + 73\cdot 191 + 85\cdot 191^{2} + 37\cdot 191^{3} + 128\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 129 + 148\cdot 191 + 102\cdot 191^{2} + 13\cdot 191^{3} + 89\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 135 + 182\cdot 191 + 93\cdot 191^{2} + 50\cdot 191^{3} + 180\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 149 + 66\cdot 191 + 111\cdot 191^{2} + 26\cdot 191^{3} + 141\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,7,6)(2,3,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.