Properties

Label 2.5_139_151.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 139 \cdot 151 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$104945= 5 \cdot 139 \cdot 151 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 75 x^{2} + 17 x + 1289 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 7 + 6\cdot 11 + 8\cdot 11^{2} + 3\cdot 11^{3} + 4\cdot 11^{4} + 10\cdot 11^{5} + 8\cdot 11^{6} + 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 8 + 7\cdot 11 + 2\cdot 11^{2} + 10\cdot 11^{3} + 7\cdot 11^{5} + 4\cdot 11^{6} + 10\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 9 + 5\cdot 11 + 11^{3} + 10\cdot 11^{4} + 11^{5} + 10\cdot 11^{6} + 10\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 10 + 11 + 10\cdot 11^{2} + 6\cdot 11^{3} + 6\cdot 11^{4} + 2\cdot 11^{5} + 9\cdot 11^{6} + 9\cdot 11^{7} +O\left(11^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.