Properties

Label 2.5_1399.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 1399 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$6995= 5 \cdot 1399 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 10 x^{2} + 11 x + 380 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12\cdot 19 + 11\cdot 19^{2} + 6\cdot 19^{3} + 9\cdot 19^{4} + 15\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 1 + 7\cdot 19 + 7\cdot 19^{2} + 12\cdot 19^{3} + 9\cdot 19^{4} + 3\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 + 19 + 12\cdot 19^{2} + 18\cdot 19^{3} + 15\cdot 19^{4} + 18\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 14 + 17\cdot 19 + 6\cdot 19^{2} + 3\cdot 19^{4} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.