Properties

Label 2.5_131.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 131 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$655= 5 \cdot 131 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 6 x^{5} + 97 x^{4} - 266 x^{3} + 265 x^{2} - 99 x + 1089 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 38\cdot 61 + 23\cdot 61^{2} + 22\cdot 61^{3} + 55\cdot 61^{4} + 23\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 + 30\cdot 61 + 42\cdot 61^{2} + 40\cdot 61^{3} + 55\cdot 61^{4} + 30\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 15 + 49\cdot 61 + 19\cdot 61^{2} + 56\cdot 61^{3} + 4\cdot 61^{4} + 39\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 36 + 4\cdot 61 + 36\cdot 61^{2} + 2\cdot 61^{3} + 6\cdot 61^{4} + 28\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 38 + 34\cdot 61 + 7\cdot 61^{2} + 45\cdot 61^{3} + 43\cdot 61^{4} + 3\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 41 + 52\cdot 61 + 35\cdot 61^{2} + 33\cdot 61^{3} + 16\cdot 61^{4} + 59\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 49 + 35\cdot 61 + 13\cdot 61^{2} + 28\cdot 61^{3} + 30\cdot 61^{4} + 40\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 56 + 59\cdot 61 + 3\cdot 61^{2} + 15\cdot 61^{3} + 31\cdot 61^{4} + 18\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,6,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,4)(5,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.