Properties

Label 2.5_11e2_19.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 11^{2} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11495= 5 \cdot 11^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 4 x^{6} + 60 x^{5} + 25 x^{4} + 50 x^{3} + 1225 x^{2} + 1375 x + 625 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 44\cdot 61 + 33\cdot 61^{2} + 32\cdot 61^{3} + 17\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 6\cdot 61 + 52\cdot 61^{2} + 3\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 59\cdot 61 + 15\cdot 61^{2} + 45\cdot 61^{3} + 58\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 21\cdot 61 + 55\cdot 61^{2} + 4\cdot 61^{3} + 58\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 14\cdot 61 + 26\cdot 61^{2} + 29\cdot 61^{3} + 51\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 36 + 35\cdot 61 + 59\cdot 61^{2} + 6\cdot 61^{3} + 16\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 40 + 50\cdot 61 + 41\cdot 61^{2} + 19\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 53 + 12\cdot 61 + 20\cdot 61^{2} + 40\cdot 61^{3} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,7)(3,6,5,8)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,7)(3,5)(6,8)$$-2$
$2$$2$$(1,3)(2,8)(4,5)(6,7)$$0$
$2$$2$$(1,8)(2,5)(3,7)(4,6)$$0$
$2$$4$$(1,2,4,7)(3,6,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.