Properties

Label 2.5_11e2.8t17.1c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 5 \cdot 11^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$605= 5 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 7 x^{6} - 15 x^{5} + 18 x^{4} - 16 x^{3} + 13 x^{2} - 5 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.5.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 15 + 45\cdot 71 + 20\cdot 71^{2} + 41\cdot 71^{3} + 39\cdot 71^{4} + 39\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 41\cdot 71 + 48\cdot 71^{2} + 50\cdot 71^{3} + 2\cdot 71^{4} + 46\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 27 + 34\cdot 71 + 44\cdot 71^{2} + 59\cdot 71^{3} + 44\cdot 71^{4} + 21\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 33 + 11\cdot 71 + 40\cdot 71^{2} + 12\cdot 71^{3} + 31\cdot 71^{4} + 41\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 35 + 42\cdot 71 + 25\cdot 71^{2} + 15\cdot 71^{3} + 18\cdot 71^{4} + 9\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 36 + 16\cdot 71 + 5\cdot 71^{2} + 53\cdot 71^{3} + 39\cdot 71^{4} + 31\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 62 + 43\cdot 71 + 58\cdot 71^{2} + 42\cdot 71^{3} + 29\cdot 71^{4} + 54\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 63 + 48\cdot 71 + 40\cdot 71^{2} + 8\cdot 71^{3} + 7\cdot 71^{4} + 40\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,8)(4,5)$
$(1,2)(3,8)(4,5)(6,7)$
$(1,4,2,5)(3,7,8,6)$
$(3,4,8,5)$
$(1,7,2,6)(3,5,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,8)(4,5)(6,7)$$-2$
$2$$2$$(3,8)(4,5)$$0$
$4$$2$$(1,8)(2,3)(4,6)(5,7)$$0$
$1$$4$$(1,6,2,7)(3,5,8,4)$$-2 \zeta_{4}$
$1$$4$$(1,7,2,6)(3,4,8,5)$$2 \zeta_{4}$
$2$$4$$(1,7,2,6)(3,5,8,4)$$0$
$2$$4$$(3,4,8,5)$$\zeta_{4} + 1$
$2$$4$$(3,5,8,4)$$-\zeta_{4} + 1$
$2$$4$$(1,2)(3,5,8,4)(6,7)$$-\zeta_{4} - 1$
$2$$4$$(1,2)(3,4,8,5)(6,7)$$\zeta_{4} - 1$
$4$$4$$(1,4,2,5)(3,7,8,6)$$0$
$4$$8$$(1,8,6,4,2,3,7,5)$$0$
$4$$8$$(1,4,7,8,2,5,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.