Properties

Label 2.5_11_41e2.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 11 \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$92455= 5 \cdot 11 \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 10 x^{2} + 72 x - 1171 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.5_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 31\cdot 59 + 7\cdot 59^{2} + 18\cdot 59^{3} + 18\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 22\cdot 59 + 18\cdot 59^{2} + 27\cdot 59^{3} + 18\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 42\cdot 59 + 33\cdot 59^{2} + 54\cdot 59^{3} + 20\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 21\cdot 59 + 58\cdot 59^{2} + 17\cdot 59^{3} + 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(3,4)$$0$
$2$$4$$(1,3,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.