Properties

Label 2.5_11_41.4t3.5
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 11 \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2255= 5 \cdot 11 \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 234 x^{4} + 1795 x^{2} + 13225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 14\cdot 59 + 11\cdot 59^{2} + 53\cdot 59^{3} + 52\cdot 59^{4} + 17\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 56\cdot 59 + 54\cdot 59^{2} + 32\cdot 59^{3} + 50\cdot 59^{4} + 55\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 17 + 46\cdot 59 + 14\cdot 59^{2} + 52\cdot 59^{3} + 29\cdot 59^{4} + 2\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 25 + 57\cdot 59 + 21\cdot 59^{2} + 20\cdot 59^{3} + 15\cdot 59^{4} + 17\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 34 + 59 + 37\cdot 59^{2} + 38\cdot 59^{3} + 43\cdot 59^{4} + 41\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 42 + 12\cdot 59 + 44\cdot 59^{2} + 6\cdot 59^{3} + 29\cdot 59^{4} + 56\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 54 + 2\cdot 59 + 4\cdot 59^{2} + 26\cdot 59^{3} + 8\cdot 59^{4} + 3\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 56 + 44\cdot 59 + 47\cdot 59^{2} + 5\cdot 59^{3} + 6\cdot 59^{4} + 41\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,2,5)(4,8,6,7)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,3,2,5)(4,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.