Properties

Label 2.5_11_31e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 11 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$52855= 5 \cdot 11 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 25 x^{2} - 55 x + 297 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 59 + 57\cdot 59^{2} + 46\cdot 59^{3} + 30\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 46\cdot 59 + 39\cdot 59^{3} + 34\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 16\cdot 59 + 19\cdot 59^{2} + 29\cdot 59^{3} + 40\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 45\cdot 59 + 40\cdot 59^{2} + 2\cdot 59^{3} + 12\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.