Properties

Label 2.5_11_31.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 11 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1705= 5 \cdot 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 42 x^{6} + 86 x^{5} + 323 x^{4} - 402 x^{3} - 239 x^{2} + 275 x - 55 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_11_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 239 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 84\cdot 239 + 43\cdot 239^{2} + 146\cdot 239^{3} + 146\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 49\cdot 239 + 145\cdot 239^{2} + 32\cdot 239^{3} + 31\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 100 + 92\cdot 239 + 45\cdot 239^{2} + 138\cdot 239^{3} + 67\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 109 + 80\cdot 239 + 23\cdot 239^{2} + 71\cdot 239^{3} + 120\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 115 + 212\cdot 239 + 39\cdot 239^{2} + 218\cdot 239^{3} + 74\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 124 + 200\cdot 239 + 17\cdot 239^{2} + 151\cdot 239^{3} + 127\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 188 + 135\cdot 239 + 30\cdot 239^{2} + 156\cdot 239^{3} + 12\cdot 239^{4} +O\left(239^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 202 + 100\cdot 239 + 132\cdot 239^{2} + 42\cdot 239^{3} + 136\cdot 239^{4} +O\left(239^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.