Properties

Label 2.5_11_31.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 11 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1705= 5 \cdot 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - 19 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_11_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 41\cdot 59 + 48\cdot 59^{2} + 13\cdot 59^{3} + 42\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 56\cdot 59 + 2\cdot 59^{2} + 39\cdot 59^{3} + 33\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 + 2\cdot 59 + 56\cdot 59^{2} + 19\cdot 59^{3} + 25\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 17\cdot 59 + 10\cdot 59^{2} + 45\cdot 59^{3} + 16\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.