Properties

Label 2.5_11_29.4t3.5
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 11 \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1595= 5 \cdot 11 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 248 x^{4} - 405 x^{2} + 6561 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 18\cdot 61 + 5\cdot 61^{2} + 2\cdot 61^{3} + 40\cdot 61^{4} + 13\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 21\cdot 61 + 33\cdot 61^{2} + 9\cdot 61^{3} + 31\cdot 61^{4} + 15\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 25 + 50\cdot 61 + 20\cdot 61^{2} + 52\cdot 61^{3} + 34\cdot 61^{4} + 11\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 40\cdot 61 + 28\cdot 61^{2} + 11\cdot 61^{3} + 27\cdot 61^{4} + 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 35 + 20\cdot 61 + 32\cdot 61^{2} + 49\cdot 61^{3} + 33\cdot 61^{4} + 59\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 36 + 10\cdot 61 + 40\cdot 61^{2} + 8\cdot 61^{3} + 26\cdot 61^{4} + 49\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 46 + 39\cdot 61 + 27\cdot 61^{2} + 51\cdot 61^{3} + 29\cdot 61^{4} + 45\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 59 + 42\cdot 61 + 55\cdot 61^{2} + 58\cdot 61^{3} + 20\cdot 61^{4} + 47\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.