Properties

Label 2.5_11_251.4t3.5
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 11 \cdot 251 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$13805= 5 \cdot 11 \cdot 251 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 118 x^{6} - 234 x^{5} + 2908 x^{4} - 2762 x^{3} - 719 x^{2} + 690 x + 180 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 25\cdot 61 + 3\cdot 61^{2} + 7\cdot 61^{3} + 46\cdot 61^{4} + 54\cdot 61^{5} +O\left(61^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 + 61 + 59\cdot 61^{2} + 36\cdot 61^{3} + 9\cdot 61^{4} + 18\cdot 61^{5} + 19\cdot 61^{6} +O\left(61^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 25 + 26\cdot 61 + 26\cdot 61^{2} + 37\cdot 61^{3} + 15\cdot 61^{4} + 49\cdot 61^{5} + 46\cdot 61^{6} +O\left(61^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 35 + 50\cdot 61 + 61^{2} + 38\cdot 61^{3} + 12\cdot 61^{4} + 30\cdot 61^{5} + 38\cdot 61^{6} +O\left(61^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 39 + 33\cdot 61 + 19\cdot 61^{2} + 6\cdot 61^{3} + 52\cdot 61^{4} + 40\cdot 61^{5} + 47\cdot 61^{6} +O\left(61^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 42 + 9\cdot 61 + 14\cdot 61^{2} + 36\cdot 61^{3} + 15\cdot 61^{4} + 4\cdot 61^{5} + 5\cdot 61^{6} +O\left(61^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 44 + 36\cdot 61 + 41\cdot 61^{2} + 40\cdot 61^{3} + 47\cdot 61^{4} + 32\cdot 61^{5} + 16\cdot 61^{6} +O\left(61^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 54 + 60\cdot 61 + 16\cdot 61^{2} + 41\cdot 61^{3} + 44\cdot 61^{4} + 13\cdot 61^{5} + 8\cdot 61^{6} +O\left(61^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,4)(2,3,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.