Properties

Label 2.5_11_19e2.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 11 \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$19855= 5 \cdot 11 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 5 x^{2} - 33 x - 241 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 2\cdot 31 + 30\cdot 31^{2} + 2\cdot 31^{3} + 4\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 31 + 14\cdot 31^{2} + 26\cdot 31^{3} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 5\cdot 31 + 29\cdot 31^{2} + 4\cdot 31^{3} + 29\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 22\cdot 31 + 19\cdot 31^{2} + 27\cdot 31^{3} + 27\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.