Properties

Label 2.5_11_19.4t3.5
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 11 \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1045= 5 \cdot 11 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 32 x^{6} + 66 x^{5} + 172 x^{4} - 216 x^{3} - 55 x^{2} + 66 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 10 + 67\cdot 79 + 24\cdot 79^{2} + 24\cdot 79^{3} + 72\cdot 79^{4} + 4\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 + 4\cdot 79^{2} + 61\cdot 79^{3} + 64\cdot 79^{4} + 5\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 17 + 74\cdot 79 + 16\cdot 79^{2} + 11\cdot 79^{3} + 39\cdot 79^{4} + 25\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 + 56\cdot 79 + 30\cdot 79^{2} + 8\cdot 79^{3} + 15\cdot 79^{4} + 72\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 33 + 39\cdot 79 + 6\cdot 79^{2} + 35\cdot 79^{3} + 31\cdot 79^{4} + 55\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 37 + 34\cdot 79 + 19\cdot 79^{2} + 64\cdot 79^{3} + 5\cdot 79^{4} + 75\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 47 + 20\cdot 79 + 7\cdot 79^{2} + 31\cdot 79^{3} + 12\cdot 79^{4} + 75\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 62 + 23\cdot 79 + 48\cdot 79^{2} + 79^{3} + 75\cdot 79^{4} + 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5)(2,7,6,8)$
$(1,2)(3,8)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $0$
$2$ $4$ $(1,3,4,5)(2,7,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.