Properties

Label 2.5_11_1451.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 5 \cdot 11 \cdot 1451 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$79805= 5 \cdot 11 \cdot 1451 $
Artin number field: Splitting field of $f= x^{4} - 141 x^{2} + 980 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_11_1451.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 15 + 64\cdot 71 + 69\cdot 71^{2} + 50\cdot 71^{3} + 52\cdot 71^{4} + 26\cdot 71^{5} + 29\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 22 + 53\cdot 71 + 48\cdot 71^{2} + 51\cdot 71^{3} + 56\cdot 71^{4} + 37\cdot 71^{5} + 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 49 + 17\cdot 71 + 22\cdot 71^{2} + 19\cdot 71^{3} + 14\cdot 71^{4} + 33\cdot 71^{5} + 69\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 56 + 6\cdot 71 + 71^{2} + 20\cdot 71^{3} + 18\cdot 71^{4} + 44\cdot 71^{5} + 41\cdot 71^{6} +O\left(71^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.