Properties

Label 2.55.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $55$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(55\)\(\medspace = 5 \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.275.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.55.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-11})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 2x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 3 + 27\cdot 59 + 50\cdot 59^{2} + 50\cdot 59^{3} + 9\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 4\cdot 59 + 33\cdot 59^{2} + 33\cdot 59^{3} + 2\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 + 49\cdot 59 + 51\cdot 59^{2} + 11\cdot 59^{3} + 34\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 31 + 37\cdot 59 + 41\cdot 59^{2} + 21\cdot 59^{3} + 12\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.