Properties

Label 2.5_1069.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 1069 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5345= 5 \cdot 1069 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 68 x^{6} - 190 x^{5} + 1259 x^{4} - 2206 x^{3} - 832 x^{2} + 1904 x + 1744 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 71\cdot 131 + 93\cdot 131^{2} + 48\cdot 131^{3} + 75\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 45\cdot 131 + 64\cdot 131^{2} + 106\cdot 131^{3} + 96\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 77\cdot 131 + 79\cdot 131^{2} + 99\cdot 131^{3} + 92\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 62\cdot 131 + 106\cdot 131^{2} + 123\cdot 131^{3} + 2\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 102 + 68\cdot 131 + 24\cdot 131^{2} + 7\cdot 131^{3} + 128\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 114 + 53\cdot 131 + 51\cdot 131^{2} + 31\cdot 131^{3} + 38\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 125 + 85\cdot 131 + 66\cdot 131^{2} + 24\cdot 131^{3} + 34\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 126 + 59\cdot 131 + 37\cdot 131^{2} + 82\cdot 131^{3} + 55\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,5)(4,8,7,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.