Properties

Label 2.5_1021.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 1021 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5105= 5 \cdot 1021 $
Artin number field: Splitting field of $f= x^{8} - 72 x^{6} + 1266 x^{4} - 4025 x^{2} + 225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 4 + 41 + 11\cdot 41^{2} + 28\cdot 41^{3} + 18\cdot 41^{4} + 6\cdot 41^{5} + 30\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 + 12\cdot 41 + 30\cdot 41^{2} + 40\cdot 41^{3} + 9\cdot 41^{4} + 8\cdot 41^{5} + 12\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 17 + 4\cdot 41 + 9\cdot 41^{2} + 8\cdot 41^{3} + 34\cdot 41^{4} + 10\cdot 41^{5} + 8\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 20 + 25\cdot 41 + 12\cdot 41^{2} + 20\cdot 41^{3} + 15\cdot 41^{4} + 28\cdot 41^{5} + 9\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 21 + 15\cdot 41 + 28\cdot 41^{2} + 20\cdot 41^{3} + 25\cdot 41^{4} + 12\cdot 41^{5} + 31\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 24 + 36\cdot 41 + 31\cdot 41^{2} + 32\cdot 41^{3} + 6\cdot 41^{4} + 30\cdot 41^{5} + 32\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 33 + 28\cdot 41 + 10\cdot 41^{2} + 31\cdot 41^{4} + 32\cdot 41^{5} + 28\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 37 + 39\cdot 41 + 29\cdot 41^{2} + 12\cdot 41^{3} + 22\cdot 41^{4} + 34\cdot 41^{5} + 10\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,5)(2,3,4,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.