Properties

Label 2.5_101.8t6.1
Dimension 2
Group $D_{8}$
Conductor $ 5 \cdot 101 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$505= 5 \cdot 101 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 8 x^{6} - 9 x^{5} + 18 x^{4} - 17 x^{3} + 6 x^{2} - 5 x + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 9 + 40\cdot 71 + 31\cdot 71^{2} + 11\cdot 71^{3} + 67\cdot 71^{4} + 50\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 47\cdot 71 + 21\cdot 71^{2} + 7\cdot 71^{3} + 63\cdot 71^{4} + 21\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 12 + 29\cdot 71 + 61\cdot 71^{2} + 3\cdot 71^{3} + 44\cdot 71^{4} + 19\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 54 + 5\cdot 71 + 26\cdot 71^{2} + 52\cdot 71^{3} + 30\cdot 71^{4} + 14\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 64 + 23\cdot 71 + 58\cdot 71^{2} + 2\cdot 71^{3} + 44\cdot 71^{4} + 61\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 68 + 66\cdot 71 + 22\cdot 71^{2} + 3\cdot 71^{3} + 57\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 69 + 48\cdot 71 + 62\cdot 71^{2} + 70\cdot 71^{3} + 51\cdot 71^{4} + 54\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 70 + 21\cdot 71 + 70\cdot 71^{2} + 60\cdot 71^{3} + 53\cdot 71^{4} + 3\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,4)(3,5)(6,8)$
$(1,8)(3,6)(4,5)$
$(1,5,4,8)(2,3,7,6)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $0$ $0$
$4$ $2$ $(1,8)(3,6)(4,5)$ $0$ $0$
$2$ $4$ $(1,5,4,8)(2,3,7,6)$ $0$ $0$
$2$ $8$ $(1,7,8,3,4,2,5,6)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,3,5,7,4,6,8,2)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.