Properties

Label 2.5_101.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5 \cdot 101 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$505= 5 \cdot 101 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 22 x^{6} + 46 x^{5} + 73 x^{4} - 102 x^{3} - 19 x^{2} + 25 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 30\cdot 79 + 49\cdot 79^{2} + 68\cdot 79^{3} + 44\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 62\cdot 79 + 31\cdot 79^{2} + 48\cdot 79^{3} + 37\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 35\cdot 79 + 24\cdot 79^{2} + 69\cdot 79^{3} + 25\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 + 9\cdot 79 + 31\cdot 79^{2} + 42\cdot 79^{3} + 61\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 51\cdot 79 + 70\cdot 79^{2} + 76\cdot 79^{3} + 32\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 48 + 4\cdot 79 + 53\cdot 79^{2} + 56\cdot 79^{3} + 25\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 33\cdot 79 + 36\cdot 79^{2} + 53\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 59 + 10\cdot 79 + 19\cdot 79^{2} + 32\cdot 79^{3} + 34\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,7)(5,6)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $0$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $4$ $(1,7,6,8)(2,3,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.