Properties

Label 2.57760.6t3.a.a
Dimension $2$
Group $D_{6}$
Conductor $57760$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(57760\)\(\medspace = 2^{5} \cdot 5 \cdot 19^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.16681088000.5
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.40.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.14440.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 11x^{4} + 224x^{2} + 1280 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 9 + \left(21 a + 28\right)\cdot 29 + \left(13 a + 2\right)\cdot 29^{2} + 11\cdot 29^{3} + \left(9 a + 9\right)\cdot 29^{4} + \left(22 a + 20\right)\cdot 29^{5} + \left(16 a + 28\right)\cdot 29^{6} + \left(11 a + 7\right)\cdot 29^{7} +O(29^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 12\cdot 29 + 2\cdot 29^{2} + 5\cdot 29^{3} + 10\cdot 29^{4} + 10\cdot 29^{5} + 14\cdot 29^{6} + 13\cdot 29^{7} +O(29^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 5 + \left(21 a + 14\right)\cdot 29 + \left(13 a + 7\right)\cdot 29^{2} + \left(9 a + 4\right)\cdot 29^{4} + \left(22 a + 22\right)\cdot 29^{5} + \left(16 a + 25\right)\cdot 29^{6} + \left(11 a + 8\right)\cdot 29^{7} +O(29^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 26 a + 20 + 7 a\cdot 29 + \left(15 a + 26\right)\cdot 29^{2} + \left(28 a + 17\right)\cdot 29^{3} + \left(19 a + 19\right)\cdot 29^{4} + \left(6 a + 8\right)\cdot 29^{5} + 12 a\cdot 29^{6} + \left(17 a + 21\right)\cdot 29^{7} +O(29^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 17 + 16\cdot 29 + 26\cdot 29^{2} + 23\cdot 29^{3} + 18\cdot 29^{4} + 18\cdot 29^{5} + 14\cdot 29^{6} + 15\cdot 29^{7} +O(29^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 26 a + 24 + \left(7 a + 14\right)\cdot 29 + \left(15 a + 21\right)\cdot 29^{2} + \left(28 a + 28\right)\cdot 29^{3} + \left(19 a + 24\right)\cdot 29^{4} + \left(6 a + 6\right)\cdot 29^{5} + \left(12 a + 3\right)\cdot 29^{6} + \left(17 a + 20\right)\cdot 29^{7} +O(29^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(2,6)(3,5)$
$(1,3,2,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(4,5)$$0$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$2$$3$$(1,2,6)(3,4,5)$$-1$
$2$$6$$(1,3,2,4,6,5)$$1$

The blue line marks the conjugacy class containing complex conjugation.